KJ'S EDUCATIONAL INSTITUTES

TRINITY COLLEGE OF ENGINEERING AND RESEARCH PUNE

(Accredited by NAAC with B++ Grade Approved by AICTE & Affiliated to SPPU, Pune) Sr. No. 25 & 27, Near. Khadi Machine Chowk, Kondhwa Annexe, Pune-48, Maharashtra

DEPARTMENT OF E&TC

		Academic Year: 2022-23
APF-24A Issue No.:01	Project Base Learning	SE Semester: II Date 281212023
Rev date 17/12/2018	List of Group Menber and Project Name	

. All the students are informed to c the seminar presentation and report as per given guidelines.

The report should be duly signed by guide and HOD and should submit to coordinator.

	Cil. Student	Project Title
Group No.	Names of the Student	
1	Prajwai Desnpande	Cignal Jammer circuit
h	A adaph Badade	Signal Jammer en s
	Abbay Audoba	
	Abhay Addoba	
2	Vichal Joshi	Smart Light using Intensity
	Sumit Patil	Controller
	Bradin Rokade	
	Hrispikesh Tambe	
3	Rohan Tather	Line following vehicles in
	A darsh Gore	factory optimisation
	Rohan Tathe	
	om shete	
	Dinali Shinde	
4	Bitesh Pokale	the state for smart
	Padir Avishkar	smart blind stick for smart
	manisha Tad	people
	Ghorpade Pradnya	
)	Chorphan P	
5	Dvkumar Bharti	
5	Tejaram Chaudhari	F 450 DRONE using
	chetan lambhade	Pixhawk
	Aditya Joshi	
	Ritesh Chhajed	
(Chaitanya Vaidya	The Monitorin
0	Chaitrali Barangle	Plant Moisture Mointonin
	chandan angale	System
	amanulla nadaf	
_	pratamesh mane	
7	akshay konaly	sound detector
	prasad mane	
	sashank kunwar	
	C Dept. of T Susmann kale	
8	sahil tekawade	
	Vite A8* shhishek G	
	autistick G	Automatic solar tracke
	anjan sinnue	

	makaranti	
9	makarand hawale	
	saina khan	
	nena paytal	Motion sensor light
10	punam samaik	
	ajay lokhande	
	ranjeet kate	Fire detection
	ronit vaidya	
11	abhijeet pawar	
	divya gandhi	
	rajkumari gupta	Data transmission using Li-Fi
	bhagannat ann it l	
12	prochi index	
	prachi Jadav	
	sashank kunwar	automatic smoke detector
	nisha kamble	alarm
13	samrudhi dedhe	
) 13	Rushikesh Sawant	
	shivraj yewale	USB LAMP circuit
1.4	piyush Nipane	
14	nawaz qureshi	
	tamboli owaliz	anti sleen alarm system
	suraksha vedpathak	
	viraj varma	
15	shubham nale	
	rushi pol	Aunding based band gesture
	junaid shaik	Auraino based hand gestare
	zakriva mulla	
	arisha shaikh	역사 이번이 그 다음 그 것은 이상 만큼 무엇을 수 있는 것이다.
16	adesh gaikwad	
10	kothaly soshank	smoke detector with fire ala
	iodhuo prochi	system
	Jadnva prachi	
17	ganesh Itikala	<u> 영화 가는 몇 일 것</u> 확실 것이 있는 것이 있는 것이 없다.
	pratik khardil	
	tirtesh pol	LPG gas lokage detecto
	vishwajit chikane	
	tushar sul	· 영상: 2017년 전 강경 이상 이상 이 여행은 이것이다.
그 옷을 깨끗한 물건이 많다.	tanay kobragade	
10		
18	ovikar krisnna	
	nadaf samulla	Water level indicato
	karan jadhav	

Dept. of E & TC

DEPARTMENT OF

ELECTRONICS & TELECOMMUNICATION

✤ GROUP MEMBERS

1 Gandhi Divya	(EN2013)
2. Gupta Rajkumari	(EN2015)
3. Bhagwat Samiksha	(EN2005)
4. Mundkar Bhakti	(EN2035)

TOPIC – Data Trasmission using LI-FI

CLASS - SE(E&TC)

* AIM

The main aim is designing and executing Li - Fi technology to provide a high-speed data communication using visible light spectrum.

* ABSTRACT

Li-Fi technology means Light Fidelity technology which was proposed by Harald Haas (a German Physicist). As the name suggests Li-Fi is a data transmission technique which uses illumination for sending the data or light as a medium of communication. It transmits data with the help of an LED bulb having variation in its intensity which has a speed of actually faster than which human eye can follow. It is also known as optical wireless technology or visible light communication. This paper focuses to explore this amazing technology and give a relative study of Li-Fi with other wireless communication technologies like W-Fi. Wi-Fi is perfect for transmission of data having a wireless coverage within buildings. But Li-Fi provides better efficiency, higher bandwidth, better security and availability with a very high speed.

✤ COMPONENTS REQUIRED

- 220ohm resistor
- Solar Panel
- Aux cable
- LED

ļ

- 9v Battery
- Connecting wires

Department of Electronics & Telecommunication

➢ Group members :

Shubham Nale (EN2038) Rushi Pol (EN2043) Junaid Shaik (EN2048) Zakriya Mulla (EN2034) Arisha Shaik (EN2049)

TOPIC: Aurdino-Based Hand Gesture Laptop

CLASS - SE(E&TC)

- Aim: The main Aim of this project is hand control using Arduino
- Abstract: The principle use behind this Project is using hands gesture for controlling PCs, Laptops, Computers, etc. With this project, our motto is to make technology more convenient for users while handling Computers and Laptops.
- * Components Required:

SR.NO	Components	Qty
1)	Ultrasonic Sensor (HG-SR04)	2
2)	Arduino UNO	
3)	Connecting Wires	As required

* Circuit Diagram:

In this Circuit, we used an Ultrasonic Sensor (HG-SR04) to detect a hand gestures from users. Arduino UNO used for action is given by the user and performs the specific action. Connecting wires are used for connection between the Ultrasonic Sensors and Arduino UNO.

Department of Electronics & Telecommunication

Academic Year 2022-2023

Savitribai Phule Pune University

- *** GROUP MEMBERS**
- 1) Hrishikesh Tambe (EN2054)

2017年1

- 2) Rohan Tathe (EN2056)
- 3) Adarsh Gore (EN2070)
- 4) Ronak Tatar (EN2071)
- 5) Om Shete (EN2051)

TOPIC - Line Following Vehicles In Factory Optimization.

CLASS - SE(E&TC)

Department of Electronics & Telecommunication

Academic Year 2022-2023

Savitribai Phule Pure University

*** GROUP MEMBERS**

- 1) Hrishikesh Tambe (EN2054)
- 2) Rohan Tathe(EN2056)3) Adarsh Gore(EN2070)
- 4) Ronak Tatar (EN2071)
- 5) Om Shete (EN2051)

TOPIC - Line Following Vehicles In Factory Optimization.,

CLASS - SE(E&TC)

♦ AIM

1)

The main aim of the project is, An automated industry with line follower transport vehicle.

* ABSTRACT

Line follower robot is one kind of autonomous robot which follows a line until that line exists. Generally, the line is drawn on the floor. It can be either black or white. The line can also be normal visible color or invisible magnetic field or electric field. The robot follows the line by using Infra-Red Ray (IR) sensors. There are five IR sensors which makes it an IR sensor array. These sensors read the line and send that reading to Arduino and then control the robot movement. In this project, line following vehicles are autonomous robots that follow a predetermined path, or line, on the ground. They have been increasingly used in manufacturing and logistics industries to streamline processes and increase efficiency.

* Hardware Requirements: -

Arduino Uno R3 And IDE
 Adafruit Motor Shield
 IR Sensor Array
 DC Power Adapter(9v,2A)
 LED
 Chassis Board
 Power Supply (9v/12v DC)
 Piezo Sensor
 LDR Sensor
 Servo Motor
 On/Off Switch

DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION

***** GROUP MEMBERS

		100000000	そう ひん だい	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		あいろう 着きにつけ	1. 1. 1.2 5 44,2
1	21.1.	1	1.1	1	/***		A 6 2
	Inno	128 14	0 Mt C	10 10 10	/ L' N	71.7	11126
1	111110		a y 1.2	- Res 1983		2.412	
10. C		123		 A. 263 (2004). 			VIN
and the second second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1211 B. P. C. L. C.	× 🗂 🗆 🖓		5 Sec. 1 16.		1

SHET ST

2 Vichal	Tools	TINIA	0241
2. VISUAL	JUSIII	(LINZ	0221
- というもうと考えるのなるようなななとく	NOT 2011 12 12 19 19 19 19 19 19 19 19 19 19 19 19 19	1	

- 3. Sumit Patil (EN2041)
- 4. Pradip Rokade (EN2045)

UNDER THE GUIDANCE OF Ms. Radhika Bothe

TOPIC - SMART STREET LIGHT USING INTENSITY CONTROLLER

CLASS - SE(E&TC)

* AIM

The main aims at designing and executing the advanced development in embedded systems for energy saving of street lights.

* ABSTRACT

We all know that street lights are one of the main city's assets. Currently, in the whole world, enormous electric energy is consumed by the street lamps, which are automatically turned on when it becomes dark and automatically turn off when it becomes bright. This is a huge waste of energy in the whole world and should be changed. Using Light Emitting Diode (LED) instead of conventional street lights reduces the power consumption. The main aim of this project is to design a system of street light controllers to reduce power consumption. The prototype is designed by using Light Dependent Resistor (LDR), Infrared sensor (IR), battery, and LED. The brightness of the lamp is controlled to reduce power consumption. The lights turn on before pedestrians and vehicles come and turn off or reduce power when there is no one. It will be difficult for pedestrians and drivers of vehicles to distinguish our smart street lamps and the conventional street lights since our street lamps all turn on before they come.

* COMPONENTS REQUIRED

- Arduino UNO(Microcontroller)
- PIR Sensor
- LDR Sensor
- LED
- IR Sensor
- Relay
- Resistor
- Jumper Wire

Department of Electronics &

Telecommunication

***** GROUP MEMBER

Shinde Dipali Machindra	(EN2072)
Pokale Ritesh Sandip	(EN2067)
Tad Manisha Vitthal	(EN2064)
Padir Avishkar Dinkar	(EN2066)
Ghorpade Pradhyna Tanaji	(EN2065)

TOPIC - SMART BLIND STICK FOR BLIND PEOPLE

CLASS - SE (E&TC)

AIM

The main aim of this project to help walking for blind people. And provide an application for blind people to detect the obstacles in various directions, detecting pits and manholes on the ground to make free to walk.

ABSTRACT

This project describes ultrasonic blind walking stick with the use of Arduino. according to who, 30 million peoples are permanently blind and 285 billion peoples with vision impairment. if you notice them, you can very well know about it they can't walk without the help of other. one has to ask guidance to reach their destination. they have to face more struggles in their life daily life. using this blind stick, a person can walk more confidently. This stick detects the object in front of the person and give response to the user either by vibrating or through command. so, the person can walk without any fear. this device will be best solution to overcome their difficulties

COMPONENTS REQUIRED

Sr.	Component	Value	Qty
$\frac{10}{1}$	Arduino UNO		1
2	USB cable for uploading the code		* 1 - 1 - 2
3	Jumper wires		
4	Ultra-sonic Sensor		1
5	Buzzer		1 (1) 21 (2) 21 (2)
6	stick		1
7	Arduino software	PAD A	
8	LED		1
9	Battery	20v	1

DEPARTMENT OF

ELECTRONICS & TELECOMMUNICATION

TOPIC – Fire Detection

✿ GROUP MEMBERS

1.	Ranjeet Kate	(EN2025)
2.	Ajay Lokhande	(EN2031)
3.	Rohit Vaidya	(EN2059)
4.	Abhijeet Pawar	(EN2069)

CLASS - SE(E&TC)

♦ AIM

 limit the emission of toxic products created by combustion, as well as global-warming gases produced by the fire itself.

♦ ABSTRACT

A fire alarm system has a number of devices working together to detect and warn people through visual and audio appliances when smoke, fire, carbon monoxide or other emergencies are present. These alarms may be activated automatically from smoke detectors, and heat detectors or may also be activated via manual fire alarm activation devices such as manual call points or pull stations. Alarms can be either motorized bells or wall mountable sounders or horns. The primary thought in the present field advances are computerizations, power utilization, and expense adequacy. Automation is implied for the decrease risk of human neglection. Two sensors viz. The Temperature sensor and Air quality sensor which are utilized as a part of the Fire Detection System to recognize a fire. The temperature sensor records the temperature of the room. The Air quality sensor detects if there is any gas present in the room.Here we have utilized an Arduino Uno to control all the command from both the sensors and execute them legitimately. Fundamentally it acts as the mind of the entire framework.

